Canine chondrocytes seeded in type I and type II collagen implants investigated In Vitro

Author(s):  
Stefan Nehrer ◽  
Howard A. Breinan ◽  
Arun Ramappa ◽  
Sonya Shortkroff ◽  
Gretchen Young ◽  
...  
Keyword(s):  
Type I ◽  
Development ◽  
1993 ◽  
Vol 117 (1) ◽  
pp. 245-251
Author(s):  
R. Quarto ◽  
B. Dozin ◽  
P. Bonaldo ◽  
R. Cancedda ◽  
A. Colombatti

Dedifferentiated chondrocytes cultured adherent to the substratum proliferate and synthesize large amounts of type I collagen but when transferred to suspension culture they decrease proliferation, resume the chondrogenic phenotype and the synthesis of type II collagen, and continue their maturation to hypertrophic chondrocyte (Castagnola et al., 1986, J. Cell Biol. 102, 2310–2317). In this report, we describe the developmentally regulated expression of type VI collagen in vitro in differentiating avian chondrocytes. Type VI collagen mRNA is barely detectable in dedifferentiated chondrocytes as long as the attachment to the substratum is maintained, but increases very rapidly upon passage of the cells into suspension culture reaching a peak after 48 hours and declining after 5–6 days of suspension culture. The first evidence of a rise in the mRNA steady-state levels is obtained already at 6 hours for the alpha 3(VI) chain. Immunoprecipitation of metabolically labeled cells with type VI collagen antibodies reveals that the early mRNA rise is paralleled by an increased secretion of type VI collagen in cell media. Induction of type VI collagen is not the consequence of trypsin treatment of dedifferentiated cells since exposure to the actin-disrupting drug cytochalasin or detachment of the cells by mechanical procedures has similar effects. In 13-day-old chicken embryo tibiae, where the full spectrum of the chondrogenic differentiation process is represented, expression of type VI collagen is restricted to the articular cartilage where chondrocytes developmental stage is comparable to stage I (high levels of type II collagen expression).(ABSTRACT TRUNCATED AT 250 WORDS)


1977 ◽  
Vol 73 (3) ◽  
pp. 736-747 ◽  
Author(s):  
K Von Der Mark ◽  
H Von Der Mark

This work describes an approach to monitor chondrogenesis of stage-24 chick limb mesodermal cells in vitro by analyzing the onset of type II collagen synthesis with carboxymethyl-cellulose chromatography, immunofluorescence, and radioimmunoassay. This procedure allowed specific and quantitative determination of chondrocytes in the presence of fibroblasts and myoblasts, both of which synthesize type I collagen. Chondrogenesis was studied in high-density cell preparations on tissue culture plastic dishes and on agar base. It was found that stage-24 limb mesenchymal cells initially synthesized only type I collagen. With the onset of chondrogenesis, a gradual transition to type II collagen synthesis was observed. In cell aggregates formed over agar, type II collagen synthesis started after 1 day in culture and reached levels of 80-90 percent of the total collagen synthesis at 6-8 days. At that time, the cells in the center of the aggregates had acquired the typical chondrocyte phenotype and stained only with type II collagen antibodies, whereas the peripheral cells had developed into a "perichondrium" and stained with type I and type II collagen antibodies. On plastic dishes plated with 5 X 10(6) cells per 35mm dish, cartilage nodules developed after 4-6 days, but the type II collagen synthesis only reached levels of 10-20 percent of the total collagen. The majority of the cells differentiated into fibroblasts and myoblasts and synthesized type I collagen. These studies demonstrate that analysis of cell specific types of collagen provides a useful method for detailing the specific events in the differentiation of mesenchymal cells in vitro.


1984 ◽  
Vol 223 (3) ◽  
pp. 587-597 ◽  
Author(s):  
K G Vogel ◽  
M Paulsson ◽  
D Heinegård

The small dermatan sulphate proteoglycan of bovine tendon demonstrated a unique ability to inhibit fibrillogenesis of both type I and type II collagen from bovine tendon and cartilage respectively in an assay performed in vitro. None of the other proteoglycan populations from cartilage, tendon or aorta, even those similar in size and chemical structure, had this effect. Alkali treatment of the small proteoglycan of tendon eliminated its ability to inhibit fibrillogenesis, whereas chondroitinase digestion did not. This indicates that its interaction with collagen depends on the core protein. Fibrillogenesis of pepsin-digested collagens was affected similarly, indicating that interaction with the collagen telopeptides is not involved. The results suggest that interactions between collagen and proteoglycans may be quite specific both for the type of proteoglycan and its tissue of origin.


2004 ◽  
Vol 24 (3) ◽  
pp. 407-411 ◽  
Author(s):  
Takahiro Ohno ◽  
Keizo Tanisaka ◽  
Yosuke Hiraoka ◽  
Takashi Ushida ◽  
Tamotsu Tamaki ◽  
...  

1984 ◽  
Vol 99 (6) ◽  
pp. 1960-1969 ◽  
Author(s):  
J C Daniel ◽  
B U Pauli ◽  
K E Kuettner

Chondrocytes isolated from bovine articular cartilage were plated at high density and grown in the presence or absence of ascorbate. Collagen and proteoglycans, the major matrix macromolecules synthesized by these cells, were isolated at times during the course of the culture period and characterized. In both control and ascorbate-treated cultures, type II collagen and cartilage proteoglycans accumulated in the cell-associated matrix. Control cells secreted proteoglycans and type II collagen into the medium, whereas with time in culture, ascorbate-treated cells secreted an increasing proportion of types I and III collagens into the medium. The ascorbate-treated cells did not incorporate type I collagen into the cell-associated matrix, but continued to accumulate type II collagen in this compartment. Upon removal of ascorbate, the cells ceased to synthesize type I collagen. Morphological examination of ascorbate-treated and control chondrocyte culture revealed that both collagen and proteoglycans were deposited into the extracellular matrix. The ascorbate-treated cells accumulated a more extensive matrix that was rich in collagen fibrils and ruthenium red-positive proteoglycans. This study demonstrated that although ascorbate facilitates the formation of an extracellular matrix in chondrocyte cultures, it can also cause a reversible alteration in the phenotypic expression of those cells in vitro.


2000 ◽  
Vol 6 (5) ◽  
pp. 555-565 ◽  
Author(s):  
Cynthia R. Lee ◽  
Howard A. Breinan ◽  
Stefan Nehrer ◽  
Myron Spector

1986 ◽  
Vol 102 (4) ◽  
pp. 1151-1156 ◽  
Author(s):  
R A Kosher ◽  
W M Kulyk ◽  
S W Gay

As limb mesenchymal cells differentiate into chondrocytes, they initiate the synthesis of type II collagen and cease synthesizing type I collagen. Changes in the cytoplasmic levels of type I and type II collagen mRNAs during the course of limb chondrogenesis in vivo and in vitro were examined using cloned cDNA probes. A striking increase in cytoplasmic type II collagen mRNA occurs coincident with the crucial condensation stage of chondrogenesis in vitro, in which prechondrogenic mesenchymal cells become closely juxtaposed before depositing a cartilage matrix. Thereafter, a continuous and progressive increase in the accumulation of cytoplasmic type II collagen mRNA occurs which parallels the progressive accumulation of cartilage matrix by cells. The onset of overt chondrogenesis, however, does not involve activation of the transcription of the type II collagen gene. Low levels of type II collagen mRNA are present in the cytoplasm of prechondrogenic mesenchymal cells at the earliest stages of limb development, well before the accumulation of detectable levels of type II collagen. Type I collagen gene expression during chondrogenesis is regulated, at least in part, at the translational level. Type I collagen mRNAs are present in the cytoplasm of differentiated chondrocytes, which have ceased synthesizing detectable amounts of type I collagen.


2018 ◽  
Vol 9 ◽  
pp. 204173141880243 ◽  
Author(s):  
Guang-Zhen Jin ◽  
Hae-Won Kim

Dedifferentiation of chondrocytes remains a major problem in cartilage tissue engineering. The development of hydrogels that can preserve chondrogenic phenotype and prevent chondrocyte dedifferentiation is a meaningful strategy to solve dedifferentiation problem of chondrocytes. In the present study, three gels were prepared (alginate gel (Alg gel), type I collagen gel (Col gel), and their combination gel (Alg/Col gel)), and the in vitro efficacy of chondrocytes culture while preserving their phenotypes was investigated. While Col gel became substantially contracted with time, the cells encapsulated in Alg gel preserved the shape over the culture period of 14 days. The mechanical and cell-associated contraction behaviors of Alg/Col gel were similar to those of Alg. The cells in Alg and Alg/Col gels exhibited round morphology, whereas those in Col gel became elongated (i.e. fibroblast-like) during cultures. The cells proliferated with time in all gels with the highest proliferation being attained in Col gel. The expression of chondrogenic genes, including SOX9, type II collagen, and aggrecan, was significantly up-regulated in Alg/Col gel and Col gel, particularly in Col gel. However, the chondrocyte dedifferentiation markers, type I collagen and alkaline phosphatase ( ALP), were also expressed at significant levels in Col gel, which being contrasted with the events in Alg and Alg/Col gels. The current results suggest the cells cultured in hydrogels can express chondrocyte dedifferentiation markers as well as chondrocyte markers, which draws attention to choose proper hydrogels for chondrocyte-based cartilage tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document